3310View
3m 47sLenght
20Rating

In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: Λ) is the value of the energy density of the vacuum of space. It was originally introduced by Albert Einstein in 1917[1] as an addition to his theory of general relativity to "hold back gravity" and achieve a static universe, which was the accepted view at the time. Einstein abandoned the concept as his "greatest blunder" after Hubble's 1929 discovery that all galaxies outside our own Local Group are moving away from each other, implying an overall expanding universe. From 1929 until the early 1990s, most cosmology researchers assumed the cosmological constant to be zero. Since the 1990s, several developments in observational cosmology, especially the discovery of the accelerating universe from distant supernovae in 1998, and also independent evidence from the cosmic microwave background and large galaxy redshift surveys, have shown that the mass-energy density of the universe includes around 70% in dark energy. While dark energy is poorly understood at a fundamental level, the main required properties of dark energy are that it dilutes much more slowly than matter as the universe expands, and that it clusters much more weakly than matter, or perhaps not at all. The cosmological constant is the simplest possible form of dark energy since it is constant in both space and time, and this leads to the current standard model of cosmology known as the Lambda-CDM model, which provides a good fit to many cosmological observations as of 2014.