4488View
5m 43sLenght
11Rating

more at http://scitech.quickfound.net/astro/astronomy_news_and_links.html "A computerized animation simulates the formation of a stellar disk and planets. Ten images from the Hubble Space Telescope (HST) show young stellar disks (taken with the Near-Infrared Camera Multi-Object Spectrometer (NICMOS)) and stellar disks around young stars (taken with the Wide-Field Planetary Camera 2 (WFPC2)). Dr. Deborah Padgett describes what astronomers see in the images of young stellar disks and Dr. Karl Stapelfeldt explains HST's role in helping astronomers to examine young stars in order to understand how solar systems like our own may form. Sound is towards the end of the video." Public domain film from NASA, slightly cropped to remove uneven edges, with the aspect ratio corrected, and mild video noise reduction applied. The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization. http://en.wikipedia.org/wiki/Nebular_hypothesis In cosmogony, the nebular hypothesis is the most widely accepted model explaining the formation and evolution of the Solar System. There is evidence that it was first proposed in 1734 by Emanuel Swedenborg. Originally applied only to our own Solar System, this method of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular hypothesis is Solar Nebular Disk Model (SNDM) or simply Solar Nebular Model. According to the nebular hypothesis, stars form in massive and dense clouds of molecular hydrogen—giant molecular clouds (GMC). They are gravitationally unstable, and matter coalesces to smaller denser clumps within, which then proceed to collapse and form stars. Star formation is a complex process, which always produces a gaseous protoplanetary disk around the young star. This may give birth to planets in certain circumstances, which are not well known. Thus the formation of planetary systems is thought to be a natural result of star formation. A sun-like star usually takes around 100 million years to form. The protoplanetary disk is an accretion disk which continues to feed the central star. Initially very hot, the disk later cools in what is known as the T tauri star stage; here, formation of small dust grains made of rocks and ices is possible. The grains may eventually coagulate into kilometer-sized planetesimals. If the disk is massive enough the runaway accretions begin, resulting in the rapid—100,000 to 300,000 years—formation of Moon- to Mars-sized planetary embryos. Near the star, the planetary embryos go through a stage of violent mergers, producing a few terrestrial planets. The last stage takes around 100 million to a billion years. The formation of giant planets is a more complicated process. It is thought to occur beyond the so-called snow line, where planetary embryos are mainly made of various ices. As a result they are several times more massive than in the inner part of the protoplanetary disk. What follows after the embryo formation is not completely clear. However, some embryos appear to continue to grow and eventually reach 5--10 Earth masses—the threshold value, which is necessary to begin accretion of the hydrogen--helium gas from the disk. The accumulation of gas by the core is initially a slow process, which continues for several million years, but after the forming protoplanet reaches about 30 Earth masses it accelerates and proceeds in a runaway manner. The Jupiter and Saturn--like planets are thought to accumulate the bulk of their mass during only 10,000 years. The accretion stops when the gas is exhausted. The formed planets can migrate over long distances during or after their formation. The ice giants like Uranus and Neptune are thought to be failed cores, which formed too late when the disk had almost disappeared... ...the nebular hypothesis was first proposed in 1734 by Emanuel Swedenborg. Immanuel Kant, who was familiar with Swedenborg's work, developed the theory further in 1755... A similar model was proposed in 1796 by Pierre-Simon Laplace... The birth of the modern widely accepted theory of planetary formation—Solar Nebular Disk Model (SNDM)—can be traced to the works of Soviet astronomer Victor Safronov. His book Evolution of the protoplanetary cloud and formation of the Earth and the planets, which was translated to English in 1972, had a long lasting effect on the way scientists think about the formation of the planets. In this book almost all major problems of the planetary formation process were formulated and some of them solved. Safronov's ideas were further developed in the works of George Wetherill, who discovered runaway accretion. While originally applied only to our own Solar System, the SNDM was subsequently thought by theorists to be at work throughout the universe. As of November 19, 2012, 851 extrasolar planets have since been discovered in our galaxy...