580View
0m 0sLenght
1Rating

Leonard Susskind (born May 21, 1940)[2][3] is the professor of theoretical physics at Stanford University, and director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the National Academy of Sciences of the US, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study. In particle physics, Supersymmetry (SUSY) is a proposed type of spacetime symmetry that relates two basic classes of elementary particles: bosons, which have an integer-valued spin, and fermions, which have a half-integer spin. Each particle from one group is associated with a particle from the other, known as its superpartner, the spin of which differs by a half-integer. In a theory with perfectly "unbroken" supersymmetry, each pair of superpartners would share the same mass and internal quantum numbers besides spin. For example, there would be a "selectron" (superpartner electron), a bosonic version of the electron with the same mass as the electron, that would be easy to find in a laboratory. Thus, since no superpartners have been observed, if supersymmetry exists it must be a spontaneously broken symmetry so that superpartners may differ in mass. Spontaneously-broken supersymmetry could solve many mysterious problems in particle physics including the hierarchy problem. The simplest realization of spontaneously-broken supersymmetry, the so-called Minimal Supersymmetric Standard Model, is one of the best studied candidates for physics beyond the Standard Model. The grand unification energy {\displaystyle \Lambda _{GUT}} , or the GUT scale, is the energy level above which, it is believed, the electromagnetic force, weak force, and strong force become equal in strength and unify to one force governed by a simple Lie group. The approximate grand unification energy value is equal to 1×1025 eV. Specific Grand unified theories (GUTs) can predict the grand unification energy but, usually, with large uncertainties due to model dependent details such as the choice of the gauge group, the Higgs sector, the matter content or further free parameters. Furthermore, at the moment it seems fair to state that there is no agreed minimal GUT. Criei este vídeo com o Editor de vídeos do YouTube (http://www.youtube.com/editor)